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Abstract. The adhesive energies and forces between surfaces of identical simple metals (Al,
Mg and Na) modelled by a semi-infinite stabilized jellium have been calculated self-consistently
as functions of their separation. The calculated binding energies agree well with the experimental
surface energies and a good agreement is found between the maximum adhesive forces and the
empirical fracture strength.

1. Introduction

The strong adhesive bonding which takes place at intimate contact between two metal
surfaces is of great significance in many surface phenomena such as friction, crack formation
and fracture. At large separations the wave functions of electrons belonging to metallic
pieces do not overlap appreciably and the interaction is dominated by the van der Waals
forces [1, 2]. For small separations between two identical metals the electrons tunnel through
the symmetric barrier and a nonvanishing charge distribution in the separation gap produces
a short-range bonding.

The early (not self-consistent) calculations of the charge redistribution at the interface
[3, 4] employed density functional theory, including the fourth-order density gradient
corrections to the kinetic energy [5], and assumed a simple overlap of the metal–vacuum
electron distributions associated with the individual metals. In these calculations the
electron-density distributions and potentials were calculated using a jellium model which
served as a first step in the studies of the properties of the inhomogeneous electron gas near
the surface of simple metals [6, 7]. The necessity of inclusion of the electron–ion-lattice
interaction into the calculation of adhesive energies and forces was recognized quite early by
Ferrante and Smith [4] who incorporated the lattice effects via the first-order perturbation
theory [6]. An attempt has been also made [2] to account for the contributions coming
from both the short-range and the van der Waals forces acting at larger separations. These
studies were followed by fully self-consistent calculations of adhesive energies [8–10] and
forces [11, 9], where the discrete lattice effects were taken into account in a perturbative
way.

The effects of crystallinity can be included from the beginning of the calculations in a
structureless pseudopotential orstabilized-jelliummodel [12]. In this model the simplicity of
jellium is retained and the forces at the jellium surface are equilibrated by taking into account
the discrete lattice effects in an averaged way. The model has proven to provide calculated
surface quantities which are much more realistic than those given using the ordinary jellium
model and, moreover, comparable with or even superior to those yielded by perturbative
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jellium calculations [13]. By modifying the electron-density profile, stabilization should
have an important effect on the adhesive binding between two metal surfaces brought into
proximity.

In this paper we present the results of self-consistent calculations of adhesive energies
and forces acting between two identical surfaces of simple metals. The calculated adhesive
energies are compared with those resulting from the ordinary jellium model. The recently
proposed asymptotic expression for the van der Waals interaction energy [14] is briefly
discussed.

2. The model

The adhesive energyEad(d) of two pieces of metal separated by a distanced can be defined
as the work required to increase the distance fromd to infinity divided by twice the cross
sectional area:

Ead(d) = E(d)− E(∞)
2A

. (1)

HereE(d) is the total energy of the system at separationd andA is the surface area of
the fragments. For identical metals initially at zero separation,Ead is the negative of the
surface energyσ .

The total energy of the metal as a functional of the electron densityn(r) is given by

E[n(r)] = Ts[n] + Exc[n(r)] +
∫
v(r)n(r) dr + 1

2

∫ ∫
n(r)n(r′)
|r − r′| dr dr′

+ 1

2

∑
i,j

Z2

|Ri −Rj | (2)

where the energy terms describe the kinetic, exchange–correlation and electrostatic energy,
respectively. Here,v(r) is the ionic potential and the last term in equation (2) describes
the mutual interaction of ions of chargeZ at positionsRi . The Hartree atomic units are
used throughout. In the jellium model, which can be applied as the zeroth approximation
to our system, the ion charges are smeared out in the volume of the metal to create a
uniform positive background of densityn+(r) = n0, and all of the electrostatic energy
contributions can be grouped into one term. However, jellium appears to be mechanically
unstable for the bulk electron densities characterizing most of the metals. This deficiency
can be remedied by reintroducing the interaction of electrons with the discrete ions. The
latter can be reintroduced in a perturbative way by replacing the electron–ion interaction
potentials by weaker pseudopotentials. Consequently, the difference potentialδv(r) of
the array of pseudopotentials and the electrostatic potential due to the uniform positive
background system

δv(r) =
∑
i

wps(r −Ri )+
∫

n+(r′)
|r − r′| dr′ (3)

can be treated as a first-order perturbation contributing to the energy. Taking into account
the Madelung interaction between discrete ions leads to the so-called classical cleavage
energy term in the adhesive energy [4, 6].

In the stabilized-jellium model adopted in this work, the discrete lattice effects are
represented by structureless averages and the total energy of a system as a functional of the
electron densityn(r) and of the positive background density can be written in the form [12]
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E[n(r)] = Ts[n(r)] + Exc[n(r)] + 1

2

∫
φ(r)[n(r)− n+(r)] dr + B

∫
d3r n+(r)

+
∫

d3r 〈δv〉WS2(r)[n(r)− n+(r)]. (4)

The first three terms represent the standard jellium energy (i.e., the kinetic, exchange–
correlation and electrostatic energy contributions) [7]. The remaining two terms originate
from the corrections which are needed to transform metal built up of spherical Wigner–
Seitz jellium cells into a more realistic model—stabilized jellium [12]. The constantB

present in the first of them is a sum of the average value of the Madelung energy of point
ions embedded in a uniform negative background and the average of the repulsive part of
the ionic pseudopotential. This term contributes to the metal bulk energy. The second
of the new terms represents a surface correction to the energy of the jellium due to the
stabilizing lattice potential. Here,〈δv〉WS2(r) is a step potential vanishing outside the
positive background region with the difference potential being averaged over the spherical
Wigner–Seitz cell.

Employing the metal bulk stability condition,〈δv〉WS can be expressed [12] as a
structureless average depending upon the bulk electron densityn0 = 3/4πr3

s alone, to
give

〈δv〉WS = −n0
dε(n0)

dn0
(5)

where ε(n0) is the total (kinetic+ exchange+ correlation) energy per particle of the
uniform electron gas of densityn0. The Ceperley–Alder values of the correlation energy
as parametrized by Perdew and Zunger [15] have been employed in this work. Note that
〈δv〉WS gives the bulk electronic pressure divided byn0.

For the symmetric positive charge-density distribution of two semi-infinite metals
separated by a distanced, the ground-state electron densityn(z) is constructed from the
solution of the Kohn–Sham equations [6] with the effective potential

veff[n; z] = φ[n; z] + vxc[n; z] + 〈δv〉WS2

(
±z− d

2

)
(6)

which is symmetric with respect to zero. The electrostatic potentialφ(z) is obtained from
the Poisson equation and the exchange–correlation potential,vxc(z), is evaluated in the local
density approximation (LDA). The form of the effective one-particle potential for stabilized
jellium differs from that for ordinary jellium only in the appearance of the last term on the
r.h.s. of equation (6). This allows the quasi-one-dimensional character of the set of self-
consistent equations which were solved following the procedure described by Nieminen [11]
to be retained.

The adhesive force acting between two fragments can be obtained by differentiating the
energy dependence with respect to the distance. Alternatively, for two interacting jellium
surfaces, the force (per unit area) can be calculated directly from the simple expression
derived by Budd and Vannimenus [16]:

Fad(d) = F0+ n0[φ(±d/2)− φ(±∞)] (7)

whereF0 is the bulk pressure exerted by the uniform electron gas of densityn0.
The stabilized-jellium model replaces the so-called pseudopotential and cleavage corr-

ections, which have to be added toFad andEad in the perturbative treatment of the lattice
effects [9, 11], by the stabilization term. This extra term inFad which should appear on the
r.h.s. of equation (7) equalsn(±d/2)〈δv〉WS and compensates exactly the bulk electronic
pressureF0 for the zero-separation limit.
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3. Results and discussion

The numerical calculations have been performed for three (Al, Mg, Na) pairs of like metal
surfaces represented by the stabilized-jellium model. The self-consistency of the calculations
has been checked through the application of the Budd–Vannimenus theorem [16] which was
obeyed to a very good accuracy for all of these metals. In all three cases the stabilizing
potential 〈δv〉WS is negative [13], ranging from−2.49 eV for Al to −0.06 for Na. This
means that the calculated electron-density profiles are more confined in the metal and fewer
electrons spill out into the separation gap. Consequently, for the stabilized-jellium surface
the bond charge density has a similar monotonic character to that for ordinary jellium but
it is reduced in magnitude. For example, in the case of Al the relative bond charge density
n(0)/n0 at the middle of the separation gap is reduced by some 10–20% at short separations
62.5 au, and by a factor of two or more ford > 7 au. For Na, where the stabilizing potential
is very weak, this reduction is small.

The surface electrostatic barrier1φ as well as the total barrier (the difference between
the effective potentials at the surface and in the bulk metal) behave qualitatively as their
counterparts for ordinary jellium and monotonically attain their asymptotic limits of the
single-surface case. The electrostatic barrier is lower whereas the total barrier is higher,
approximately by the magnitude of〈δv〉WS, than the corresponding ones for ordinary jellium.

Figure 1. Adhesive binding energy curves for two parallel Al surfaces as functions of their
separation. Full line: stabilized jellium; dashed line: ordinary jellium; dotted line: the van der
Waals interaction energy.

Figure 1 shows the adhesive energy plotted versus the separation between two Al
surfaces represented by jellium and stabilized-jellium models. The shapes of the two curves
differ markedly as regards the position of the minimum and its depth. For both models
the magnitudes of the adhesive energy at zero separation agree well with the values of the
negative of the surface energy calculated for single surfaces [13]. However, in the case
of ordinary jellium the position of the minimum is distant by about 1.2 Bohr fromd = 0.
Like in the perturbational treatment of Ferrante and Smith [4, 9], the effect of crystallinity,
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inherently included in the stabilized-jellium model, allows one to change the magnitude
of the adhesive energy curve and to shift the minimum tod = 0. Similar character of
the adhesive energy curves is observed for Mg surfaces. For Na–Na contact the effect of
crystallinity is small and the two curves (for jellium and stabilized jellium) do not exhibit
big differences in the magnitudes and the positions of the minimum.

The effect of atomic corrugations on the single-crystal planes can be accounted for in a
variant of the stabilized-jellium model [12] by adding an extra crystal-face-dependent term
to 〈δv〉WS. Consequently, the latter should be replaced by〈δv〉face in the respective equations
[13]. The difference between the surface energy of the flat Al surface and that of Al(111),
calculated in the stabilized-jellium model [13], amounts to only about 10 erg cm−2, so the
adhesive energy curve for Al(111) is very close to that for a flat surface of Al and for
reasons of clarity is not drawn in figure 1.

Figure 2. Adhesive binding energies calculated in the stabilized-jellium model for two parallel
metallic surfaces of the same metal.

The calculated adhesive energy curves can be compared with the van der Waals
interaction energy. Recently Lundqvistet al [17, 18] have proposed an extension to the
density functional theory to include the dispersion interactions. For the two interacting
parallel surfaces a modified expression for the van der Waals interaction energy has been
proposed [14] which, for large separation, can be written in the form

EvdW = − CvdW

(d − Z1− Z2)2
. (8)

CvdW is the van der Waals constant andZ1 andZ2 are the van der Waals reference planes of
two metals. In figure 1 the interaction energy for Al(111) surfaces represented by stabilized
jellium calculated from equation (8) withCvdW = 0.002 25 andZ1 = Z2 = 0.75 au is
compared with the charge overlap energies. It is seen that the dispersion energies dominate
for all separations. This is contrary to previous findings [19, 2, 11] where, considering
the classical Lifshitz formula, it was found that van der Waals interactions prevail only
for larger separations. The above-given value of the van der Waals constant [20] and that
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used in references [2, 11] for Al agree within 3%, so it is the van der Waals reference
plane position which increases the magnitude of the interaction by reducing the separations
appearing in the denominator of equation (8).

In figure 2 we have plotted the adhesive energies versus separation for the three metals
represented by stabilized jellium. As can been seen, each of these curves shows a minimum
at d = 0. The depths of the minima agree to a very good accuracy with the negative of
the surface energies calculated [13] for a flat surface of stabilized jellium. Also the zero-
separation adhesive energies calculated in this work in the LDA for Al and Mg show better
agreement with the experimental surface energies (1143 erg cm−2 for Al and 785 erg cm−2

for Mg [21]) than those resulting from the application of perturbation theory to the ordinary
jellium [9]. For Na the result of a perturbative treatment agrees better with the experimental
data (261 erg cm−2 [21]). Only a small part of these differences arises from the different
parametrization of the correlation energy employed in this paper [15].

Figure 3. The adhesive force per unit area between two parallel Al surfaces as a function of
their separation. The full curve represents the flat-surface stabilized-jellium model. The chain
line shows the results for Al(111) in the face-dependent stabilized jellium. The dashed line
represents ordinary jellium.

In figure 3 we show the adhesive force for the contact of two Al surfaces. For the
jellium model the adhesive force at zero separation is equal to the bulk pressure of the
homogeneous electron gas. For a flat surface of stabilized jellium the zero-separation force
vanishes because it is compensated by the stabilization term. For small separations the force
rises linearly. The linear force constant can be compared with that calculated in terms of the
static dielectric function of the homogeneous electron gas [16, 19, 22]. The inclusion of the
face dependence in the stabilized-jellium model disturbs its stability. This can be seen in the
case of two Al(111) surfaces in contact. On adding to the average of the difference potential
〈δv〉WS an extra contribution due to the atomic corrugations, its magnitude changes from
−2.49 eV, for a flat surface, to−1.75 eV, for the (111) face of Al. This has a relatively
small effect on the adhesive energy curve but it is clearly visible in the force curve plotted
in figure 3. As can been seen, the adhesive force for the Al(111) surface crosses zero at
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Figure 4. The force per unit area acting between two parallel metallic surfaces calculated in
the stabilized-jellium model.

about a 0.4 Bohr separation and is negative ford = 0. The adhesive force calculated for
flat surfaces of Al, Mg and Na is plotted versus separation in figure 4. For small separations
and all three metals the adhesive force rises approximately linearly and attains its maximum
at about 1 Bohr. With the decrease of the average electron density in the bulk metal, the
position of the maximum shifts toward larger separations.

The maximum in the adhesive force can be associated with the ideal fracture strength of
the metal, which is an important parameter in the phenomenological theories of fracture. The
present calculations for the flat surface of stabilized jellium giveFmax(Al) = 4.2×10−4 au=
1.24×1011 dyn cm−2 andFmax(Mg) = 2.1×10−4 au= 6.2×1010 dyn cm−2. The value for
Al is twice that reported in references [2, 11] and compares reasonably well with the value
1.72×1011 dyn cm−2 which results from a crude estimation using Orowan’s formula [2]. A
similar estimation for Mg gives 1.14×1011 dyn cm−2 which is almost twice the value given
by Fmax. However, considering the very approximate character of this estimation involving
empirical parameters—Young’s modulus and the surface energy—and the uncertainty in the
experimental values of the latter, the agreement might be considered very good.

In summary, using the stabilized-jellium model, we have calculated self-consistently
the adhesive energies and forces for the contacts of identical simple metals. The stabilized
jellium, by its definition, does not suffer from the principal drawback of the jellium model:
the calculated adhesive forces go to zero with the separation tending to zero, and the
minimum in the binding energy curves appears at zero separation. There is a pressing need
for an adhesion theory which can consistently connect the two regions of the short-range and
the long-range (van der Waals) interactions. The substantial progress that has been made
recently in describing the van der Waals interactions on the basis of density functional
theory [17, 18] makes it look hopeful that such a unifying theory may be established quite
soon.
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